期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:284
Formation of singularities for the relativistic Euler equations
Article
Athanasiou, Nikolaos1  Zhu, Shengguo1,2 
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
关键词: Relativistic Euler equations;    Shock formation;    Large data;    Asymptotic behaviour;   
DOI  :  10.1016/j.jde.2021.03.010
来源: Elsevier
PDF
【 摘 要 】

This paper contributes to the study of large data problems for C-1 solutions of the relativistic Euler equations. First, in the (1 + 1)-dimensional spacetime setting, if the initial data are strictly away from the vacuum, a key difficulty in considering the singularity formation is coming up with a way to obtain sharp enough control on the lower bound of the mass-energy density function.. For this reason, via an elaborate argument on a certain ODE inequality and introducing some key artificial (new) quantities, we provide one time-dependent lower bound of rho of the (1+1)-dimensional relativistic Euler equations, which involves looking at the difference of the two Riemann invariants, along with certain weighted gradients of them. Ultimately, for C-1 solutions with uniformly positive initial mass-energy density of the corresponding Cauchy problem, we give a necessary and sufficient condition for the singularity formation in finite time. Second, for the (3+1)-dimensional relativistic fluids, under the assumption that the initial mass-energy density vanishes in some open domain, we give a sufficient condition for C-1 solutions to blow up in finite time, no matter how small or smooth the initial data are. Moreover, we present some interesting study on the asymptotic behaviour of the relativistic velocity, which shows that one cannot obtain any global regular solution whose L-infinity norm of u decays to zero as time t goes to infinity. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2021_03_010.pdf 456KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:2次