期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:289
Min-max solutions for super sinh-Gordon equations on compact surfaces
Article
Jevnikar, Aleks1  Malchiodi, Andrea2  Wu, Ruijun3 
[1] Univ Udine, Dept Math Comp Sci & Phys, Via Sci 206, I-33100 Udine, Italy
[2] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[3] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
关键词: Super sinh-Gordon equations;    Existence results;    Min-max methods;    Multiplicity results;   
DOI  :  10.1016/j.jde.2021.04.022
来源: Elsevier
PDF
【 摘 要 】

In the present paper we initiate the variational analysis of a super sinh-Gordon system on compact sur-faces, yielding the first example of non-trivial solution of min-max type. The proof is based on a linking argument jointly with a suitably defined Nehari manifold and a careful analysis of Palais-Smale sequences. We complement this study with a multiplicity result exploiting the symmetry of the problem. (c) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2021_04_022.pdf 423KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次