期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:289 |
Min-max solutions for super sinh-Gordon equations on compact surfaces | |
Article | |
Jevnikar, Aleks1  Malchiodi, Andrea2  Wu, Ruijun3  | |
[1] Univ Udine, Dept Math Comp Sci & Phys, Via Sci 206, I-33100 Udine, Italy | |
[2] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy | |
[3] SISSA, Via Bonomea 265, I-34136 Trieste, Italy | |
关键词: Super sinh-Gordon equations; Existence results; Min-max methods; Multiplicity results; | |
DOI : 10.1016/j.jde.2021.04.022 | |
来源: Elsevier | |
【 摘 要 】
In the present paper we initiate the variational analysis of a super sinh-Gordon system on compact sur-faces, yielding the first example of non-trivial solution of min-max type. The proof is based on a linking argument jointly with a suitably defined Nehari manifold and a careful analysis of Palais-Smale sequences. We complement this study with a multiplicity result exploiting the symmetry of the problem. (c) 2021 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2021_04_022.pdf | 423KB | download |