| JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:202 |
| Degenerate bifurcation points of periodic solutions of autonomous Hamiltonian systems | |
| Article | |
| Radzki, W ; Rybicki, S | |
| 关键词: Hamiltonian system; periodic solution; bifurcation; emanation; branching point; bifurcation index; topological degree for SO(2)-equivariant gradient maps; | |
| DOI : 10.1016/j.jde.2004.03.037 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We study connected branches of nonconstant 2pi-periodic solutions of the Hamilton equation. x(overdot)(t) = lambdaVdelH(x(t)), where lambdaepsilon(0,+infinity), H epsilon C-2(R-n x R-n, R) and del(2)H(x(0)) = [(A)(0) (0)(B)] for x(0) epsilon delH(-1)(0). The Hessian del(2) H(x(0)) can be singular. We formulate sufficient conditions for the existence of such branches bifurcating from given (x(0), lambda(0)). As a consequence we prove theorems concerning the existence of connected branches of arbitrary periodic nonstationary trajectories of the Hamiltonian system x(overdot)(t) = JdelH(x(t)) emanating from x(0). We describe also minimal periods of trajectories near x(0). (C) 2004 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jde_2004_03_037.pdf | 318KB |
PDF