期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:235
Global existence and asymptotic behavior of classical solutions of quasilinear hyperbolic systems with linearly degenerate characteristic fields
Article
Dai, Wen-Rong ; Kong, De-Xing
关键词: quasilinear hyperbolic system;    linear degeneracy;    global classical solution;    normalized coordinates;    traveling wave;   
DOI  :  10.1016/j.jde.2006.12.020
来源: Elsevier
PDF
【 摘 要 】

In this paper, we study the global existence and the asymptotic behavior of classical solution of the Cauchy problem for quasilinear hyperbolic system with constant multiple and linearly degenerate characteristic fields. We prove that the global C-1 solution exists uniquely if the BV norm of the initial data is sufficiently small. Based on the existence result on the global classical solution, we show that, when the time t tends to the infinity, the solution approaches a combination of C-1 traveling wave solutions. Finally, we give an application to the equation for time-like extremal surfaces in the Minkowski space-time R1+n. (c) 2007 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2006_12_020.pdf 278KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次