期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:259
Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme
Article
Li, Shanbing1  Wu, Jianhua1  Doug, Yaying2 
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
[2] NW Univ Xian, Sch Math, Xian 710069, Shaanxi, Peoples R China
关键词: Degn-Harrison;    Fundamental properties;    Stability;    Nonexistence;    Local and global structure;   
DOI  :  10.1016/j.jde.2015.03.017
来源: Elsevier
PDF
【 摘 要 】

In this paper, we consider a reaction-diffusion model with Degn-Harrison reaction scheme. Some fundamental analytic properties of nonconstant positive solutions are first investigated. We next study the stability of constant steady-state solution to both ODE and PDE models. Our result also indicates that if either the size of the reactor or the effective diffusion rate is large enough, then the system does not admit nonconstant positive solutions. Finally, we establish the global structure of steady-state bifurcations from simple eigenvalues by bifurcation theory and the local structure of the steady-state bifurcations from double eigenvalues by the techniques of space decomposition and implicit function theorem. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2015_03_017.pdf 453KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:2次