期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:269
Coupled mode equations and gap solitons in higher dimensions
Article
Dohnal, Tomas1  Wahlers, Lisa2 
[1] Martin Luther Univ Halle Wittenberg, Inst Math, D-06099 Halle, Saale, Germany
[2] Tech Univ Dortmund, Fak Math, Vogelpothsweg 87, D-44227 Dortmund, Germany
关键词: Wave-packets;    Coupled mode equations;    Periodic media;    Gap soliton;    Approximation error;    Gross-Pitaevskii;   
DOI  :  10.1016/j.jde.2020.01.037
来源: Elsevier
PDF
【 摘 要 】

We study wave-packets in nonlinear periodic media in arbitrary (d) spatial dimension, modeled by the cubic Gross-Pitaevskii equation. In the asymptotic setting of small and broad wave-packets with N is an element of N carrier Bloch waves the effective equations for the envelopes are first order coupled mode equations (CMEs). We provide a rigorous justification of the effective equations. The estimate of the asymptotic error is carried out in an L-1-norm in the Bloch variables. This translates to a supremum norm estimate in the physical variables. In order to investigate the existence of gap solitons of the d-dimensional CMEs, we discuss spectral gaps of the CMEs. For N = 4 and d = 2 a family of time harmonic gap solitons is constructed formally asymptotically and numerically. Moving gap solitons have not been found for d > 1 and for the considered values of N due to the absence of a spectral gap in the standard moving frame variables. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2020_01_037.pdf 3508KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次