期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:255
Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains
Article
Brzezniak, Z.1  Caraballo, T.2  Langa, J. A.2  Li, Y.3  Lukaszewicz, G.4  Real, J.2 
[1] Univ York, Dept Math, York Y010 5DD, N Yorkshire, England
[2] Univ Seville, Dpto Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
[3] Huazhong Univ Sci & Technol, Informat Engn & Simulat Ctr, Wuhan 430074, Peoples R China
[4] Univ Warsaw, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
关键词: Random attractors;    Energy method;    Asymptotically compact random dynamical systems;    Stochastic Navier-Stokes;    Unbounded domains;   
DOI  :  10.1016/j.jde.2013.07.043
来源: Elsevier
PDF
【 摘 要 】

We show that the stochastic flow generated by the 2-dimensional Stochastic Navier-Stokes equations with rough noise on a Poincare-like domain has a unique random attractor. One of the technical problems associated with the rough noise is overcomed by the use of the corresponding Cameron-Martin (or reproducing kernel Hilbert) space. Our results complement the result by Brzezniak and Li (2006) [10] who showed that the corresponding flow is asymptotically compact and also generalize Caraballo et al. (2006) [12] who proved existence of a unique attractor for the time-dependent deterministic Navier-Stokes equations. (C) 2013 Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2013_07_043.pdf 394KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次