JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:266 |
Two-dimensional vortex sheets for the nonisentropic Euler equations: Nonlinear stability | |
Article | |
Morando, Alessandro1  Trebeschi, Paola1  Wang, Tao2,3  | |
[1] Univ Brescia, DICATAM, Via Valotti 9, I-25133 Brescia, Italy | |
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China | |
[3] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Hubei, Peoples R China | |
关键词: Nonisentropic fluid; Compressible vortex sheet; Characteristic boundary; Existence; Nonlinear stability; Nash-Moser iteration; | |
DOI : 10.1016/j.jde.2018.10.029 | |
来源: Elsevier | |
【 摘 要 】
We show the short-time existence and nonlinear stability of vortex sheets for the nonisentropic compressible Euler equations in two spatial dimensions, based on the weakly linear stability result of Morando and Trebeschi (2008) [20]. The missing normal derivatives are compensated through the equations of the linearized vorticity and entropy when deriving higher-order energy estimates. The proof of the resolution for this nonlinear problem follows from certain a priori tame estimates on the effective linear problem in the usual Sobolev spaces and a suitable Nash-Moser iteration scheme. (C) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2018_10_029.pdf | 1438KB | download |