期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:266
Two-dimensional vortex sheets for the nonisentropic Euler equations: Nonlinear stability
Article
Morando, Alessandro1  Trebeschi, Paola1  Wang, Tao2,3 
[1] Univ Brescia, DICATAM, Via Valotti 9, I-25133 Brescia, Italy
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[3] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Hubei, Peoples R China
关键词: Nonisentropic fluid;    Compressible vortex sheet;    Characteristic boundary;    Existence;    Nonlinear stability;    Nash-Moser iteration;   
DOI  :  10.1016/j.jde.2018.10.029
来源: Elsevier
PDF
【 摘 要 】

We show the short-time existence and nonlinear stability of vortex sheets for the nonisentropic compressible Euler equations in two spatial dimensions, based on the weakly linear stability result of Morando and Trebeschi (2008) [20]. The missing normal derivatives are compensated through the equations of the linearized vorticity and entropy when deriving higher-order energy estimates. The proof of the resolution for this nonlinear problem follows from certain a priori tame estimates on the effective linear problem in the usual Sobolev spaces and a suitable Nash-Moser iteration scheme. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2018_10_029.pdf 1438KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次