期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:264
Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion
Article
Babadjian, Jean-Francois1  Mora, Maria Giovanna2 
[1] Univ Paris Saclay, Lab Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, France
[2] Univ Pavia, Dipartimento Matemat, Via Ferrata 1, I-27100 Pavia, Italy
关键词: Elasto-plasticity;    Convex analysis;    Quasi-static evolution;    Regularity;    Functions of bounded deformation;    Capacity;   
DOI  :  10.1016/j.jde.2017.12.034
来源: Elsevier
PDF
【 摘 要 】

This work is devoted to establishing a regularity result for the stress tensor in quasi-static planar isotropic linearly elastic-perfectly plastic materials obeying a Drucker-Prager or Mohr-Coulomb yield criterion. Under suitable assumptions on the data, it is proved that the stress tensor has a spatial gradient that is locally squared integrable. As a corollary, the usual measure theoretical flow rule is expressed in a strong form using the quasi-continuous representative of the stress. (c) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_12_034.pdf 584KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:2次