期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:269
Hydrodynamic limit for the inhomogeneous incompressible Navier-Stokes/Vlasov-Fokker-Planck equations
Article
Su, Yunfei1  Yao, Lei1 
[1] Northwest Univ, Sch Math, Xian 710127, Peoples R China
关键词: Hydrodynamic limit;    Inhomogeneous incompressible Navier-Stokes/Vlasov-Fokker-Planck equations;    Relative entropy method;   
DOI  :  10.1016/j.jde.2019.12.027
来源: Elsevier
PDF
【 摘 要 】

In this paper, we study the hydrodynamic limit for the inhomogeneous incompressible NavierStokes/Vlasov-Fokker-Planck equations in a two or three dimensional bounded domain when the initial density is bounded away from zero. The proof relies on the relative entropy argument to obtain the strong convergence of macroscopic density of the particles n(epsilon) in L-infinity (0, T; L-1(Omega)), which extends the works of Goudon-Jabin-Vasseur [15] and Mellt-Vasseur [26] to inhomogeneous incompressible NavierStokes/Vlasov-Fokker-Planck equations. Precisely, the relative entropy estimates in [15] and [26] give the strong convergence of u(epsilon) and n(epsilon), rho(epsilon) and n(epsilon), respectively. However, we only obtain the strong convergence of n(epsilon) and u(epsilon) from the relative entropy estimate, and we use another way to obtain the strong convergence of rho(epsilon) via the convergence of u(epsilon). Furthermore, when the initial density may vanish, taking advantage of compactness result L-M hooked right arrow hooked right arrow H(-1)of Orlicz spaces in 2D, we obtain the convergence of no in L-infinity (0, T; H-1(Omega)), which is used to obtain the relative entropy estimate, thus we also show the hydrodynamic limit for 2D inhomogeneous incompressible Navier-Stokes/Vlasov-Fokker-Planck equations when there is initial vacuum. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2019_12_027.pdf 1477KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次