期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:272
Central periodic points of linear systems
Article
Ayala, Victor1  Da Silva, Adriano2 
[1] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
[2] Univ Estadual Campinas, Inst Matemat, Cx Postal 6065, BR-13081970 Campinas, SP, Brazil
关键词: Linear systems;    Periodic points;    Control sets;   
DOI  :  10.1016/j.jde.2020.10.001
来源: Elsevier
PDF
【 摘 要 】

In this paper, we introduce the concept of central periodic points of a linear system as points which lies on orbits starting and ending at the central subgroup of the system. We show that this set is bounded if and only if the central subgroup is compact. Moreover, if the system admits a control set containing the identity element of G then, the set of central periodic points, coincides with its interior. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2020_10_001.pdf 306KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次