期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:266
Existence of solutions of a non-linear eigenvalue problem with a variable weight
Article
Hadiji, Rejeb1  Vigneron, Francois1 
[1] Univ Paris Est, Lab Anal & Math Appl, CNRS, UMR 8050, 61 Ave Gen Gaulle, F-94010 Creteil, France
关键词: Critical Sobolev exponent;    Minimization problem;    Non-linear effects;   
DOI  :  10.1016/j.jde.2018.08.001
来源: Elsevier
PDF
【 摘 要 】

We study the non-linear minimization problem on H-0(1) (Omega) subset of L-q with q = 2n/n-2, alpha > 0 and n >= 4: [GRAPHICS] integral(Omega) a(x, u)vertical bar del u vertical bar(2) - lambda integral(Omega) vertical bar u vertical bar(2) where a(x, s) presents a global minimum alpha at (x(0), 0) with x(0) is an element of Omega. In order to describe the concentration of u(x) around x(0), one needs to calibrate the behavior of a(x, s) with respect to s. The model case is [GRAPHICS] integral(Omega) (alpha + vertical bar x vertical bar(beta) vertical bar u vertical bar(k))vertical bar del u vertical bar(2) - lambda integral(Omega) vertical bar u vertical bar(2). In a previous paper dedicated to the same problem with lambda = 0, we showed that minimizers exist only in the range beta < kn/q, which corresponds to a dominant non-linear term. On the contrary, the linear influence for beta >= kn/q prevented their existence. The goal of this present paper is to show that for 0 < lambda <= alpha lambda(1) (Omega), 0 <= k <= q - 2 and beta > kn/q+2, minimizers do exist. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2018_08_001.pdf 390KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:0次