期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:258 |
A Liouville theorem for high order degenerate elliptic equations | |
Article | |
Huang, Genggeng1,2  Li, Congming3  | |
[1] Shanghai Jiao Tong Univ, INS, Dept Math, Shanghai 200030, Peoples R China | |
[2] Shanghai Jiao Tong Univ, MOE LSC, Shanghai 200030, Peoples R China | |
[3] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA | |
关键词: Degenerate elliptic; Moving plane; Divergence identity; | |
DOI : 10.1016/j.jde.2014.10.017 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we apply the method of moving plane to the following high order degenerate elliptic equation, (-A)(p)u = u(alpha) in R-+(n+1), n >= 1, where the operator A = y partial derivative(2)(y) + a partial derivative(y) + Delta(x), a >= 1. We get a Liouville theorem for subcritical case and classify the solutions for the critical case. (C) 2014 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2014_10_017.pdf | 323KB | download |