期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:267
Bifurcations of small limit cycles in Lienard systems with cubic restoring terms
Article
Tian, Yun1  Han, Maoan1,2  Xu, Fangfang3,4 
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[4] Qingdao Univ, Sch Automat, Qingdao 266071, Shandong, Peoples R China
关键词: Limit cycle;    Polynomial Lienard systems;    Hopf bifurcations;    Involutions;   
DOI  :  10.1016/j.jde.2019.02.018
来源: Elsevier
PDF
【 摘 要 】

In this paper, we study bifurcations of small-amplitude limit cycles of Lienard systems of the form (x) over dot = y - F(x), (y) over dot = -g(x), where g(x) is a cubic polynomial, and F(x) is a smooth or piecewise smooth polynomial of degree n. By using involutions, we obtain sharp upper bounds of the number of small-amplitude limit cycles produced around a singular point for some systems of this type. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2019_02_018.pdf 849KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次