期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:246
On convergence of solutions to equilibria for quasilinear parabolic problems
Article
Pruess, Jan2  Simonett, Gieri1  Zacher, Rico2 
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Univ Halle Wittenberg, Inst Math, D-06120 Halle, Germany
关键词: Quasilinear parabolic equations;    Normally stable;    Center manifolds;    Nonlinear boundary conditions;    Free boundary problems;    Travelling waves;   
DOI  :  10.1016/j.jde.2008.10.034
来源: Elsevier
PDF
【 摘 要 】

We show convergence of Solutions to equilibria for quasilinear parabolic evolution equations in situations where the set of equilibria is non-discrete, but forms a finite-dimensional C-1-manifold which is normally hyperbolic. Our results do not depend on the presence of an appropriate Lyapunov functional as in the Lojasiewicz-Simon approach, but are of local nature. (C) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2008_10_034.pdf 365KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次