期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:261
Summability of canard-heteroclinic saddle connections
Article
Kenens, Karel1 
[1] Hasselt Univ, Dept Math, Martelarenlaan 42, B-3500 Hasselt, Belgium
关键词: Gevrey series;    Borel summation;    Slow-fast systems;    Singular perturbations;    Canards;   
DOI  :  10.1016/j.jde.2016.08.030
来源: Elsevier
PDF
【 摘 要 】

For a given (real analytic) slow-fast system {(x) over dot = epsilon f(x, y, epsilon) (y) over dot =g(x, y, epsilon), that admits a slow-fast saddle and that satisfies some mild assumptions, the Borel-summability properties of the saddle separatrix tangent in the direction of the critical curve are investigated: 1-summability is shown. It is also shown that slow-fast saddle connections of canard type have summability properties, in contrast to the typical lack of Borel-summability for canard solutions of general equations. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2016_08_030.pdf 504KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次