期刊论文详细信息
| JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:251 |
| Fixed point indices of iterated smooth maps in arbitrary dimension | |
| Article | |
| Graff, Grzegorz1  Jezierski, Jerzy2  Nowak-Przygodzki, Piotr1  | |
| [1] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80233 Gdansk, Poland | |
| [2] Warsaw Univ Life Sci SGGW, Inst Applicat Math, PL-00757 Warsaw, Poland | |
| 关键词: Fixed point index; Smooth maps; Iterations; | |
| DOI : 10.1016/j.jde.2011.05.024 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Let f be a smooth self-map of R(m), when m is an arbitrary natural number. We give a complete description of possible sequences of indices of iterations of f at an isolated fixed point, answering in affirmative the Chow, Mallet-Paret and Yorke conjecture posed in [S.N. Chow, J. Mallet-Parret, J.A. Yorke, A periodic point index which is a bifurcation invariant, in: Geometric Dynamics, Rio de Janeiro, 1981, in: Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 109-131]. (C) 2011 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jde_2011_05_024.pdf | 262KB |
PDF