期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:252
Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density
Article
Mora, Maria Giovanna1  Scardia, Lucia2 
[1] Scuola Int Super Studi Avanzati, I-34136 Trieste, Italy
[2] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
关键词: Nonlinear elasticity;    Plate theories;    Von Karman equations;    Equilibrium configurations;    Stationary points;   
DOI  :  10.1016/j.jde.2011.09.009
来源: Elsevier
PDF
【 摘 要 】

The asymptotic behaviour of the equilibrium configurations of a thin elastic plate is studied, as the thickness h of the plate goes to zero. More precisely, it is shown that critical points of the nonlinear elastic functional epsilon(h), whose energies (per unit thickness) are bounded by Ch(4), converge to critical points of the Gamma-limit of h(-4)epsilon(h). This is proved under the physical assumption that the energy density W(F) blows up as det F -> 0. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2011_09_009.pdf 239KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:2次