期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:259
Global existence and local well-posedness for a three-component Camassa-Holm system with N-peakon solutions
Article
Luo, Wei1  Yin, Zhaoyang1,2 
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
关键词: A three-component Camassa-Holm system;    Local well-posedness;    Blow-up criteria;    Global existence;    Peakon solutions;   
DOI  :  10.1016/j.jde.2015.02.005
来源: Elsevier
PDF
【 摘 要 】

In this paper we mainly investigate the Cauchy problem of a three-component Camassa-Holm system. We first prove the local well-posedness of the system in Besov spaces B-p,r(s) with p, r is an element of [1, infinity], s > max{1/p, 1/2} by using the Littlewood-Paley theory and transport equations theory. Then, we establish two blow-up criteria which along with the conservation laws enable us to study global existence. Moreover, if the initial data satisfies some certain sign conditions, we obtain a global existence result. Finally, we verify that the system possesses peakon solutions. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2015_02_005.pdf 413KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次