期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:269
Spectral flow, Brouwer degree and Hill's determinant formula
Article
Portaluri, Alessandro1  Wu, Li2 
[1] Univ Torino, DISAFA, Largo Paolo Braccini 2, I-10095 Turin, Italy
[2] Shandong Univ, Dept Math, Jinan 250100, Shandong, Peoples R China
关键词: Brouwer degree;    Trace formula;    Spectral flow;    Hill?s determinant formula;    Elliptic boundary value problems;   
DOI  :  10.1016/j.jde.2020.05.030
来源: Elsevier
PDF
【 摘 要 】

In 2005 a new topological invariant defined in terms of the Brouwer degree of a determinant map, was introduced by Musso, Pejsachowicz and the first name author for counting the conjugate points along a semi -Riemannian geodesic. This invariant was defined in terms of a suspension of a complexified family of linear second order Dirichlet boundary value problems. In this paper, starting from this result, we generalize this invariant to a general self-adjoint Morse -Sturm system and we prove a new spectral flow formula. Finally we discuss the relation between this spectral flow formula and the Hill?s determinant formula and we apply this invariant for detecting instability of periodic orbits of a Hamiltonian system. ? 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2020_05_030.pdf 452KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次