期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:246
Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations
Article
Armstrong, Scott N.
关键词: Fully nonlinear elliptic equation;    Principal eigenvalue;    Dirichlet problem;    Anti-maximum principle;   
DOI  :  10.1016/j.jde.2008.10.026
来源: Elsevier
PDF
【 摘 要 】

We study the fully nonlinear elliptic equation F(D(2)u, Du, u, x) = f (0.1) in a smooth bounded domain Omega, under the assumption that the nonlinearity F is uniformly elliptic and positively homogeneous. Recently, it has been shown that such operators have two principal half eigenvalues, and that the corresponding Dirichlet problem possesses solutions, if both of the principal eigenvalues are positive. In this paper, we prove the existence of solutions of the Dirichlet problem if both principal eigenvalues are negative, provided the second eigenvalue is positive, and generalize the anti-maximum principle of Clement and Peletier [P. Clement, LA. Peletier, An anti-maximum principle for second-order elliptic operators, J. Differential Equations 34 (2) (1979) 218-229] to homogeneous, fully nonlinear operators. (C) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2008_10_026.pdf 330KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次