期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:260
On the flow of non-axisymmetric perturbations of cylinders via surface diffusion
Article
LeCrone, Jeremy1  Simonett, Gieri2 
[1] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
[2] Vanderbilt Univ, Dept Math, Nashville, TN USA
关键词: Surface diffusion;    Well posedness;    Unbounded surfaces;    Maximal regularity;    Nonlinear stability;    Implicit function theorem;   
DOI  :  10.1016/j.jde.2015.12.008
来源: Elsevier
PDF
【 摘 要 】

We study the surface diffusion flow acting on a class of general (non-axisymmetric) perturbations of cylinders C-r in IR3. Using tools from parabolic theory on uniformly regular manifolds, and maximal regularity, we establish existence and uniqueness of solutions to surface diffusion flow starting from (spatially-unbounded) surfaces defined over C-r via scalar height functions which are uniformly bounded away from the central cylindrical axis. Additionally, we show that C-r is normally stable with respect to 2 pi-axially-periodic perturbations if the radius r > 1, and unstable if 0 < r < 1. Stability is also shown to hold in settings with axial Neumann boundary conditions. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2015_12_008.pdf 382KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次