期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:251
Insulating layers and Robin Problems on Koch mixtures
Article
Capitanelli, Raffaela1  Vivaldi, Maria Agostina1 
[1] Univ Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, I-00161 Rome, Italy
关键词: Elliptic operators;    Weights;    Homogenization;    Fractals;    Asymptotics;   
DOI  :  10.1016/j.jde.2011.02.003
来源: Elsevier
PDF
【 摘 要 】

This paper deals with a reinforcement problem for a plane domain Omega((xi)) whose boundary is a deterministic or random mixture of self-similar Koch curves. We construct an epsilon-thin polygonal 2-dimensional fiber Sigma((xi),n)(epsilon), n is an element of N, 0 < epsilon < 1, around pre-fractal approximating domains Omega((xi),n) and related suitable energy functionals. The aim of this paper is to study the asymptotic behavior of the reinforced energy functionals while, simultaneously, the thickness of the fibers and the conductivity of the functionals on the fibers converges to 0 as n -> +infinity. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2011_02_003.pdf 447KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:3次