期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:251
Diffusion as a singular homogenization of the Frenkel-Kontorova model
Article
Alibaud, N.2,3  Briani, A.1,4  Monneaue, R.5 
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] CNRS, Lab Math Besancon, UMR 6623, F-25030 Besancon, France
[3] Prince Songkla Univ, Fac Sci, Dept Math, Hat Yai 90112, Songkhla, Thailand
[4] ENSTA, UMA, F-75739 Paris 15, France
[5] Univ Paris Est, CERMICS, Ecole Ponts ParisTech, F-77455 Marne La Vallee 2, France
关键词: Particle systems;    Periodic homogenization;    Frenkel-Kontorova models;    Hamilton-Jacobi equations;    Nonlinear diffusion;   
DOI  :  10.1016/j.jde.2011.05.020
来源: Elsevier
PDF
【 摘 要 】

In this work, we consider a general fully overdamped Frenkel-Kontorova model. This model describes the dynamics of an infinite chain of particles, moving in a periodic landscape. Our aim is to describe the macroscopic behavior of this system. We study a singular limit corresponding to a high density of particles moving in a vanishing periodic landscape. We identify the limit equation which is a nonlinear diffusion equation. Our homogenization approach is done in the framework of viscosity solutions. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2011_05_020.pdf 347KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:3次