期刊论文详细信息
| JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:251 |
| Diffusion as a singular homogenization of the Frenkel-Kontorova model | |
| Article | |
| Alibaud, N.2,3  Briani, A.1,4  Monneaue, R.5  | |
| [1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy | |
| [2] CNRS, Lab Math Besancon, UMR 6623, F-25030 Besancon, France | |
| [3] Prince Songkla Univ, Fac Sci, Dept Math, Hat Yai 90112, Songkhla, Thailand | |
| [4] ENSTA, UMA, F-75739 Paris 15, France | |
| [5] Univ Paris Est, CERMICS, Ecole Ponts ParisTech, F-77455 Marne La Vallee 2, France | |
| 关键词: Particle systems; Periodic homogenization; Frenkel-Kontorova models; Hamilton-Jacobi equations; Nonlinear diffusion; | |
| DOI : 10.1016/j.jde.2011.05.020 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In this work, we consider a general fully overdamped Frenkel-Kontorova model. This model describes the dynamics of an infinite chain of particles, moving in a periodic landscape. Our aim is to describe the macroscopic behavior of this system. We study a singular limit corresponding to a high density of particles moving in a vanishing periodic landscape. We identify the limit equation which is a nonlinear diffusion equation. Our homogenization approach is done in the framework of viscosity solutions. (C) 2011 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jde_2011_05_020.pdf | 347KB |
PDF