期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:260
On the regularizing effect for unbounded solutions of first-order Hamilton-Jacobi equations
Article
Barles, Guy1  Chasseigne, Emmanuel1 
[1] Univ Tours, Federat Denis Poisson FR CNRS 2964, Lab Math & Phys Theor UMR CNRS 7350, Parc Grandmont, F-37200 Tours, France
关键词: First-order Hamilton-Jacobi Equations;    Viscosity solutions;    Regularizing effects;   
DOI  :  10.1016/j.jde.2016.01.021
来源: Elsevier
PDF
【 摘 要 】

We give a simplified proof of regularizing effects for first-order Hamilton-Jacobi Equations of the form u(t) + H(x, t, Du) = 0 in R-N x (0, +infinity) in the case where the idea is to first estimate u(t). As a consequence, we have a Lipschitz regularity in space and time for coercive Hamiltonians and, for hypo-elliptic Hamiltonians, we also have an Holder regularizing effect in space following a result of L.C. Evans and M.R. James. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2016_01_021.pdf 247KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次