期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:218 |
Singular perturbations for third-order nonlinear multi-point boundary value problem | |
Article | |
Du, ZJ ; Ge, WG ; Zhou, MG | |
关键词: singular perturbations; nonlinear boundary value problem; existence and uniqueness; asymptotic estimates; upper and lower solutions; Leray-Schauder degree; | |
DOI : 10.1016/j.jde.2005.01.005 | |
来源: Elsevier | |
【 摘 要 】
This paper is devoted to study the following third-order multi-point singularly perturbed boundary value problem [GRAPHICS] where a, b, c, d >= 0, A, B is an element of R, a + b > 0, c + d > 0, alpha(i) <= 0, beta(i) < 0, i = 1, 2,..., n - 2, 0 < xi(1) < 2 < (...) <, xi(n-2) < 1, and 0 < eta(1) < 2 <... < eta(2) < 1. The existence, uniqueness and asymptotic estimates of solutions of the boundary value problem are give by using priori estimates, differential inequalities technique and Leray-Schauder degree theory. (c) 2005 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2005_01_005.pdf | 181KB | download |