期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:255
On the perturbed Q-curvature problem on S4
Article
Prashanth, S.1  Santra, Sanjiban2  Sarkar, Abhishek1 
[1] TIFR CAM, Bangalore 560055, Karnataka, India
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词: Perturbed problem;    Exponential nonlinearity;    Uniqueness;    Multiplicity;   
DOI  :  10.1016/j.jde.2013.06.015
来源: Elsevier
PDF
【 摘 要 】

Let go denote the standard metric on S-4 and P-g0 = Delta(2)(g0) - 2 Delta(g0) denote the corresponding Paneitz operator. In this work, we study the following fourth order elliptic problem with exponential nonlinearity P(g0)u + 6 = 2 Q (x)e(4u) on S-4. Here Q is a prescribed smooth function on S-4 which is assumed to be a perturbation of a constant. We prove existence results to the above problem under assumptions only on the shape of Q near its critical points. These are more general than the non-degeneracy conditions assumed so far. We also show local uniqueness and exact multiplicity results for this problem. The main tool used is the Lyapunov-Schmidt reduction. Crown Copyright (C) 2013 Published by Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2013_06_015.pdf 406KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:2次