期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:262
Global existence and asymptotic behavior of classical solutions to a parabolic-elliptic chemotaxis system with logistic source on RN
Article
Salako, Rachidi Bolaji1  Shen, Wenxian1 
[1] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
关键词: Parabolic elliptic chemotaxis system;    Logistic source;    Classical solution;    Local existence;    Global existence;    Asymptotic behavior;   
DOI  :  10.1016/j.jde.2017.02.011
来源: Elsevier
PDF
【 摘 要 】

In the current paper, we consider the following parabolic elliptic semilinear Keller Segel model on R-N, {u(t) = del center dot(del(u) - chi(u)del(u)) + a(u) - b(u)(2), x is an element of R-N, t > 0, 0=(Delta - I)v + u, x is an element of R-N, t > 0, where x > 0, a >= 0, b > 0 are constant real numbers and N is a positive integer. We first prove the local existence and uniqueness of classical solutions (u(x, t; u(0)), v(x, t; u(0))) with u(x, 0; u(0)) = u(0) (x) for various initial functions u(0) (x). Next, under some conditions on the constants a, b, x and the dimension N, we prove the global existence and boundedness of classical solutions (u(x, t; u(0)), v(x, t; u(0))) for given initial functions u(0)(x). Finally, we investigate the asymptotic behavior of the global solutions with strictly positive initial functions or nonnegative compactly supported initial functions. Under some conditions on the constants a, b, x and the dimension N, we show that for every strictly positive initial function u(0)(.), lim(t ->infinity x is an element of R)(N) sup [vertical bar u(x,y;u(0)) - a/b vertical bar + vertical bar v(x,t;u(0)) - a/b vertical bar = 0, and that for every nonnegative initial function u0(.) with non -empty and compact support supp(u0), there are 0 < c(low)(*)row (u(0)) < c(up)(*)(u(0)) < infinity such that lim(t ->infinity vertical bar x vertical bar <= ct) sup [vertical bar u(x, t ;u(0)) - a/b vertical bar + vertical bar v(x, t; u(0)) - a/b vertical bar = 0 for all(0) < c < c(low)(*)(u(0)) and lim(t ->infinity vertical bar x vertical bar >= ct) sup [vertical bar u(x, t; u(0)) - a/b vertical bar + vertical bar v(x, t; u(0)) - a/b vertical bar = 0 for all(c) > c(up)(*)(u(0)). (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_02_011.pdf 2506KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次