期刊论文详细信息
| JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:254 |
| Multiple solutions for a quasilinear Schrodinger equation | |
| Article | |
| Fang, Xiang-Dong1  Szulkin, Andrzej2  | |
| [1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China | |
| [2] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden | |
| 关键词: Quasilinear Schrodinger equation; Multiplicity of solutions; Nehari manifold; | |
| DOI : 10.1016/j.jde.2012.11.017 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In this paper we consider the quasilinear Schrodinger equation -Delta u + V(x)u - Delta(u(2))u = g(x, u), x is an element of R-N, where g and V are periodic in x(1), ... , x(N) and g is odd in u, subcritical and satisfies a monotonicity condition. We employ the approach developed in Szulkin and Weth (2009, 2010) [15,16] and obtain infinitely many geometrically distinct solutions. (C) 2012 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jde_2012_11_017.pdf | 259KB |
PDF