期刊论文详细信息
| JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:249 |
| Finite-dimensional global attractors in Banach spaces | |
| Article | |
| Carvalho, Alexandre N.2  Langa, Jose A.3  Robinson, James C.1  | |
| [1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England | |
| [2] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, BR-13560970 Sao Carlos, SP, Brazil | |
| [3] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain | |
| 关键词: Global attractors; Negatively invariant sets; Box-counting dimension; Banach-Mazur distance; | |
| DOI : 10.1016/j.jde.2010.09.032 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We provide bounds on the upper box-counting dimension of negatively invariant subsets of Banach spaces, a problem that is easily reduced to covering the image of the unit ball under a linear map by a collection of balls of smaller radius. As an application of the abstract theory we show that the global attractors of a very broad class of parabolic partial differential equations (semilinear equations in Banach spaces) are finite-dimensional. (C) 2010 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jde_2010_09_032.pdf | 178KB |
PDF