期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:249
Finite-dimensional global attractors in Banach spaces
Article
Carvalho, Alexandre N.2  Langa, Jose A.3  Robinson, James C.1 
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[2] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, BR-13560970 Sao Carlos, SP, Brazil
[3] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
关键词: Global attractors;    Negatively invariant sets;    Box-counting dimension;    Banach-Mazur distance;   
DOI  :  10.1016/j.jde.2010.09.032
来源: Elsevier
PDF
【 摘 要 】

We provide bounds on the upper box-counting dimension of negatively invariant subsets of Banach spaces, a problem that is easily reduced to covering the image of the unit ball under a linear map by a collection of balls of smaller radius. As an application of the abstract theory we show that the global attractors of a very broad class of parabolic partial differential equations (semilinear equations in Banach spaces) are finite-dimensional. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2010_09_032.pdf 178KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:0次