期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:262
Existence and multiplicity of nontrivial solutions for some biharmonic equations with p-Laplacian
Article
Sun, Juntao1,2  Chu, Jifeng3  Wu, Tsung-fang4 
[1] Shandong Univ Technol, Sch Sci, Zibo 255049, Peoples R China
[2] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[3] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[4] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung 811, Taiwan
关键词: Biharmonic equations;    p-Laplacian;    Variational methods;    Gagliardo-Nirenberg inequality;   
DOI  :  10.1016/j.jde.2016.10.001
来源: Elsevier
PDF
【 摘 要 】

We investigate a class of nonlinear biharmonic equations with p-Laplacian {Delta(2)u - beta Delta(p)u + lambda V(x)u = f(x,u) in R-N, u is an element of H-2(R-N), where N >= 1, beta is an element of R, lambda > 0 is a parameter and Delta(p)u = div(|del u|(p-2)Vu) with p >= 2. Unlike most other papers on this problem, we replace Laplacian with p-Laplacian and allow beta to be negative. Under some suitable assumptions on V(x) and f(x, u), we obtain the existence and multiplicity of nontrivial solutions for lambda large enough. The proof is based on variational methods as well as Gagliardo-Nirenberg inequality. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2016_10_001.pdf 1354KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:1次