期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:263
Regularity of weak solutions of elliptic and parabolic equations with some critical or supercritical potentials
Article
Li, Zijin1,2  Zhang, Qi S.3 
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, IMS, Nanjing 210093, Jiangsu, Peoples R China
[3] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词: Weak solutions;    Elliptic;    Parabolic;    Holder continuity;    Critical;    Supercritical potential;   
DOI  :  10.1016/j.jde.2017.02.029
来源: Elsevier
PDF
【 摘 要 】

We prove Holder continuity of weak solutions of the uniformly elliptic and parabolic equations partial derivative(i)(a(ij)(x)partial derivative(j)u(x)) - A/vertical bar x vertical bar(2+beta)u(x) = 0 (A > 0, beta >= 0), (0.1) partial derivative(i)(a(ij)(x, t)partial derivative(j)u(x, t)) - A/vertical bar x vertical bar(2+beta)u(x, t) - partial derivative(t)u(x, t) = 0 (A > 0, beta >= 0), (0.2) with critical or supercritical 0-order term coefficients which are beyond De Giorgi-Nash-Moser's Theory. We also prove, in some special cases, weak solutions are even differentiable. Previously P. Baras and J. A. Goldstein [3] treated the case when A < 0, (a(ij)) = I and beta = 0 for which they show that there does not exist any regular positive solution or singular positive solutions, depending on the size of vertical bar A vertical bar. When A > 0, beta = 0 and (a(jj)) = I, P.D. Milman and Y.A. Semenov [7,8] obtain bounds for the heat kernel. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_02_029.pdf 1336KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:0次