期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:268
Existence and convergence of solutions for nonlinear biharmonic equations on graphs
Article
Han, Xiaoli1  Shao, Mengqiu1  Zhao, Liang2 
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst MOE, Beijing 100875, Peoples R China
关键词: Sobolev space;    Biharmonic equation;    Locally finite graph;    Ground state;   
DOI  :  10.1016/j.jde.2019.10.007
来源: Elsevier
PDF
【 摘 要 】

In this paper, we first prove some propositions of Sobolev spaces defined on a locally finite graph G = (V, E), which are fundamental when dealing with equations on graphs under the variational framework. Then we consider a nonlinear biharmonic equation Lambda(2)u - Lambda u + (lambda a + 1)u = vertical bar u vertical bar(p-2)u on G = (V, E). Under some suitable assumptions, we prove that for any lambda > 1 and p > 2, the equation admits a ground state solution u(lambda). Moreover, we prove that as lambda -> +infinity, the solutions u(lambda) converge to a solution of the equation {Delta(2)u - Delta u + u = vertical bar u vertical bar(p-2)u, in Omega, u=0, on partial derivative Omega, where Omega ={x is an element of V: a(x) = 0} is the potential well and partial derivative Omega denotes theboundary of Omega. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2019_10_007.pdf 1023KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次