JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:255 |
On restricted analytic gradients on analytic isolated surface singularities | |
Article | |
Grandjean, Vincent1  Sanz, Fernando2  | |
[1] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil | |
[2] Univ Valladolid, Fac Ciencias, Dept Algebra Anal Matemat Geometria & Topol, E-47006 Valladolid, Spain | |
关键词: Gradient vector field; Oscillating trajectories; Blowing-up; Reduction of singularities; | |
DOI : 10.1016/j.jde.2013.05.020 | |
来源: Elsevier | |
【 摘 要 】
Let (X, 0) be a real analytic isolated surface singularity at the origin 0 of R-n and let g be a real analytic Riemannian metric at 0 is an element of R-n. Given a real analytic function f(0) : (R-n, 0) -> (R, 0) singular at 0, we prove that the gradient trajectories for the metric g vertical bar(X\0) of the restriction (f(0)vertical bar(X)) escaping from or ending up at 0 do not oscillate. Such a trajectory is thus a sub-pfaffian set. Moreover, in each connected component of X \ 0 where the restricted gradient does not vanish, there is always a trajectory accumulating at 0 and admitting a formal asymptotic expansion at 0. (c) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2013_05_020.pdf | 421KB | download |