期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:259
Asymptotic profile of a parabolic-hyperbolic system with boundary effect arising from tumor angiogenesis
Article
Mei, Ming1,2  Peng, Hongyun3  Wang, Zhi-An4 
[1] Champlain Coll St Lambert, Dept Math, Quebec City, PQ J4P 3P2, Canada
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] S China Univ Technol, Sch Math, Guangzhou 510641, Guangdong, Peoples R China
[4] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
关键词: Chemotaxis;    Traveling wave solutions;    Asymptotic stability;    Boundary effect;    Energy estimates;   
DOI  :  10.1016/j.jde.2015.06.022
来源: Elsevier
PDF
【 摘 要 】

This paper concerns a parabolic hyperbolic system on the half space R+ with boundary effect. The system is derived from a singular chemotaxis model describing the initiation of tumor angiogenesis. We show that the solution of the system subject to appropriate boundary conditions converges to a traveling wave profile as time tends to infinity if the initial data is a small perturbation around the wave which is shifted far away from the boundary but its amplitude can be arbitrarily large. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2015_06_022.pdf 1070KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:1次