期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:266
Non-coercive Lyapunov functions forinfinite-dimensional systems
Article
Mironchenko, Andrii1  Wirth, Fabian1 
[1] Univ Passau, Fac Comp Sci & Math, Innstr 33, D-94032 Passau, Germany
关键词: Nonlinear control systems;    Infinite-dimensional systems;    Lyapunov methods;    Global asymptotic stability;   
DOI  :  10.1016/j.jde.2018.11.026
来源: Elsevier
PDF
【 摘 要 】

We show that the existence of a non-coercive Lyapunov function is sufficient for uniform global asymptotic stability (UGAS) of infinite-dimensional systems with external disturbances provided the speed of decay is measured in terms of the norm of the state and an additional mild assumption is satisfied. For evolution equations in Banach spaces with Lipschitz continuous nonlinearities these additional assumptions become especially simple. The results encompass some recent results on linear switched systems on Banach spaces. Finally, we derive new non-coercive converse Lyapunov theorems and give some examples showing the necessity of our assumptions. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2018_11_026.pdf 1385KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次