期刊论文详细信息
| JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:249 |
| Pattern formation (I): The Keller-Segel model | |
| Article | |
| Guo, Yan2  Hwang, Hyung Ju1  | |
| [1] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South Korea | |
| [2] Brown Univ, Div Appl Math, Providence, RI 02912 USA | |
| 关键词: Keller-Segel; Chemotaxis; Pattern formation; Instability; Nonlinear dynamics; | |
| DOI : 10.1016/j.jde.2010.07.025 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We investigate nonlinear dynamics near an unstable constant equilibrium in the classical Keller-Segel model. Given any general perturbation of magnitude delta, we prove that its nonlinear evolution is dominated by the corresponding linear dynamics along a fixed finite number of fastest growing modes, over a time period of In 1/delta. Our result can be interpreted as a rigorous mathematical characterization for early pattern formation in the Keller-Segel model. (C) 2010 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jde_2010_07_025.pdf | 160KB |
PDF