期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:252
A backward-forward regularization of the Perona-Malik equation
Article
Guidotti, Patrick
关键词: Nonlinear diffusion;    Forward-backward diffusion;    Well-posedness;    Young measure solutions;    Perona-Malik type equation;    Global existence;    Qualitative behavior;   
DOI  :  10.1016/j.jde.2011.10.022
来源: Elsevier
PDF
【 摘 要 】

It is shown that the Perona-Malik equation (PME) admits a natural regularization by forward-backward diffusions possessing better analytical properties than PME itself. Well-posedness of the regularizing problem along with a complete understanding of its long time behavior can be obtained by resorting to weak Young measure valued solutions in the spirit of Kinderlehrer and Pedregal (1992) [1] and Demoulini (1996) In Solutions are unique (to an extent to be specified) but can exhibit micro-oscillations (in the sense of minimizing sequences and in the spirit of material science) between preferred gradient states. In the limit of vanishing regularization, the preferred gradients have size 0 or infinity thus explaining the well-known phenomenon of staircasing. The theoretical results do completely confirm and/or predict numerical observations concerning the generic behavior of solutions. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2011_10_022.pdf 774KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次