期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:252
The obstacle problem for parabolic non-divergence form operators of Hormander type
Article
Frentz, Marie1  Gotmark, Elin1  Nystrom, Kaj1 
[1] Umea Univ, Dept Math & Math Stat, S-90187 Umea, Sweden
关键词: Obstacle problem;    Parabolic equations;    Hormander condition;    Hypo-elliptic;    Embedding theorem;    A priori estimates;   
DOI  :  10.1016/j.jde.2012.01.032
来源: Elsevier
PDF
【 摘 要 】

In this paper we establish the existence and uniqueness of strong solutions to the obstacle problem for a class of parabolic sub-elliptic operators in non-divergence form structured on a set of smooth vector fields in R-n, X = {X-1 , . . . , X-q}, q <= n, satisfying Hormander's finite rank condition. We furthermore prove that any strong solution belongs to a suitable class of Holder continuous functions. As part of our argument, and this is of independent interest, we prove a Sobolev type embedding theorem, as well as certain a priori interior estimates, valid in the context of Sobolev spaces defined in terms of the system of vector fields. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2012_01_032.pdf 443KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次