期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:253
Global generic dynamics close to symmetry
Article
Rodrigues, Alexandre A. P.1 
[1] Univ Porto, Ctr Matemat, P-4169007 Oporto, Portugal
关键词: Heteroclinic networks;    Symmetry breaking;    Bykov cycles;    Shilnikov's homoclinic cycles;   
DOI  :  10.1016/j.jde.2012.06.009
来源: Elsevier
PDF
【 摘 要 】

Our object of study is the dynamics that arises in generic perturbations of an asymptotically stable heteroclinic cycle in S-3. The cycle involves two saddle-foci of different type and is structurally stable within the class of (Z(2) circle plus Z(2))-symmetric vector fields. The cycle contains a two-dimensional connection that persists as a transverse intersection of invariant surfaces under symmetry-breaking perturbations. Gradually breaking the symmetry in a two-parameter family we get a wide range of dynamical behaviour: an attracting periodic trajectory; other heteroclinic trajectories; homoclinic orbits; n-pulses; suspended horseshoes and cascades of bifurcations of periodic trajectories near an unstable homoclinic cycle of Shilnikov type. We also show that, generically, the coexistence of linked homoclinic orbits at the two saddle-foci has codimension 2 and takes place arbitrarily close to the symmetric cycle. (c) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2012_06_009.pdf 534KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次