期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:255
Equiconvergence of spectral decompositions of Hill-Schrodinger operators
Article
Djakov, Plamen1  Mityagin, Boris2 
[1] Sabanci Univ, TR-34956 Istanbul, Turkey
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词: Hill-Schrodinger operators;    Singular potentials;    Spectral decompositions;    Equiconvergence;   
DOI  :  10.1016/j.jde.2013.07.030
来源: Elsevier
PDF
【 摘 要 】

We study in various functional spaces the equiconvergence of spectral decompositions of the Hill operator L = d(2)/dx(2) + v(x), x is an element of [0, pi], with H-per(-1)-potential and the free operator L-0 = -d(2)/dx(2), subject to periodic, antiperiodic or Dirichlet boundary conditions. In particular, we prove that parallel to S-N - S-N(0) : L-a -> L-b parallel to -> 0 if 1 < a <= b < infinity, 1/a - 1/b < 1/2, where S-N and S-N(0) are the N-th partial sums of the spectral decompositions of L and L-0. Moreover, if v is an element of H-alpha with 1/2 < alpha < 1 and 1/a = 3/2 - alpha, then we obtain uniform equiconvergence: parallel to S-N - S-N(0) : L-a -> L-infinity parallel to -> 0 as N -> infinity. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2013_07_030.pdf 647KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次