| JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:255 |
| Equiconvergence of spectral decompositions of Hill-Schrodinger operators | |
| Article | |
| Djakov, Plamen1  Mityagin, Boris2  | |
| [1] Sabanci Univ, TR-34956 Istanbul, Turkey | |
| [2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA | |
| 关键词: Hill-Schrodinger operators; Singular potentials; Spectral decompositions; Equiconvergence; | |
| DOI : 10.1016/j.jde.2013.07.030 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We study in various functional spaces the equiconvergence of spectral decompositions of the Hill operator L = d(2)/dx(2) + v(x), x is an element of [0, pi], with H-per(-1)-potential and the free operator L-0 = -d(2)/dx(2), subject to periodic, antiperiodic or Dirichlet boundary conditions. In particular, we prove that parallel to S-N - S-N(0) : L-a -> L-b parallel to -> 0 if 1 < a <= b < infinity, 1/a - 1/b < 1/2, where S-N and S-N(0) are the N-th partial sums of the spectral decompositions of L and L-0. Moreover, if v is an element of H-alpha with 1/2 < alpha < 1 and 1/a = 3/2 - alpha, then we obtain uniform equiconvergence: parallel to S-N - S-N(0) : L-a -> L-infinity parallel to -> 0 as N -> infinity. (C) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jde_2013_07_030.pdf | 647KB |
PDF