期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:269
Hyperbolic systems with non-diagonalisable principal part and variable multiplicities, II: Microlocal analysis
Article
Garetto, Claudia1  Jaeh, Christian2  Ruzhansky, Michael3,4 
[1] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[2] Georg August Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37037 Gottingen, Germany
[3] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[4] Queen Mary Univ London, Sch Math Sci, Mile End, London E1 4NS, England
关键词: Hyperbolic systems;    Fourier integral operators;    Microlocal analysis;    Propagation of singularities;   
DOI  :  10.1016/j.jde.2020.05.038
来源: Elsevier
PDF
【 摘 要 】

In this paper we continue the study of non-diagonalisable hyperbolic systems with variable multiplicity started by the authors in [1]. In the case of space dependent coefficients, we prove a representation formula for solutions that allows us to derive results of regularity and propagation of singularities. (c) 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2020_05_038.pdf 351KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次