期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:250 |
Lipschitz metric for the periodic Camassa-Holm equation | |
Article | |
Grunert, Katrin2  Holden, Helge1,3  Raynaud, Xavier3  | |
[1] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway | |
[2] Univ Vienna, Fac Math, A-1090 Vienna, Austria | |
[3] Univ Oslo, Ctr Math Applicat, NO-0316 Oslo, Norway | |
关键词: Camassa-Holm equation; Lipschitz metric; Conservative solutions; | |
DOI : 10.1016/j.jde.2010.07.006 | |
来源: Elsevier | |
【 摘 要 】
We study the stability of conservative solutions of the Cauchy problem for the Camassa-Holm equation u(t) - u(xxt) + kappa u(x) + 3uu(x) - 2u(x)u(xx) - uu(xxx) = 0 with periodic initial data u(0). In particular. we derive a new Lipschitz metric d(D) with the property that for two solutions u and v of the equation we have d(D)(u(t), v(t)) <= e(Ct)d(D)(u(0), v(0)). The relationship between this metric and usual norms in H-per(1) and L-per(infinity) is clarified. (C) 2010 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2010_07_006.pdf | 396KB | download |