期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:264
Spectral approach to homogenization of hyperbolic equations with periodic coefficients
Article
Dorodnyi, M. A.1  Suslina, T. A.1 
[1] St Petersburg State Univ, Univ Skaya Nab 7-9, St Petersburg 199034, Russia
关键词: Periodic differential operators;    Hyperbolic equations;    Homogenization;    Effective operator;    Operator error estimates;   
DOI  :  10.1016/j.jde.2018.02.023
来源: Elsevier
PDF
【 摘 要 】

In L-2 (R-d; C-n), we consider selfadjoint strongly elliptic second order differential operators A(epsilon) with periodic coefficients depending on x/epsilon, epsilon > 0. We study the behavior of the operators cos(A(epsilon)(1/2)tau) and A(epsilon)(-1/2) sin(A(epsilon)(1/2)tau), tau is an element of R, for small epsilon. Approximations for these operators in the (H-s -> L-2)-operator norm with a suitable s are obtained. The results are used to study the behavior of the solution v(epsilon) of the Cauchy problem for the hyperbolic equation partial derivative(2)(tau)v(epsilon) = -A(epsilon)v(epsilon) + F. General results are applied to the acoustics equation and the system of elasticity theory. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2018_02_023.pdf 2579KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次