期刊论文详细信息
| JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:268 |
| On the generalized Um,pf classes of De Giorgi-Ladyzhenskaya-Ural'tseva and pointwise estimates of solutions to high-order elliptic equations via Wolff potentials | |
| Article | |
| Skrypnik, Igor I.1,2  Voitovych, Mykhailo V.1  | |
| [1] Natl Acad Sci Ukraine, Inst Appl Math & Mech, Gen Batiouk Str 19, UA-84116 Sloviansk, Ukraine | |
| [2] Vasyl Stus Donetsk Natl Univ, Math Anal & Differential Equat, 600 Richcha Str 21, UA-21021 Vinnytsia, Ukraine | |
| 关键词: Quasilinear high-order elliptic equation; Generalized solution; Pointwise estimates; Wolff potential; Local boundedness; | |
| DOI : 10.1016/j.jde.2019.11.051 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We consider quasilinear elliptic 2m-order (m >= 2) partial differential equations which prototype is Sigma(vertical bar alpha vertical bar=m) (-1)D-vertical bar alpha vertical bar(alpha)(D(m)u vertical bar(p-2)D(alpha)u) = f(x), x is an element of Omega, where Omega is a bounded open set in R-n, n = mp and f is an element of L (1) (Omega). Using an analogue of the Kilpelainen-Maly method, we obtain the local boundedness and continuity of arbitrary weak solution u is an element of W-m,W-p (Omega) via the Wolff potential W-m,p(f). (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jde_2019_11_051.pdf | 2195KB |
PDF