期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:230
A non-adapted sparse approximation of PDEs with stochastic inputs
Article
Doostan, Alireza1  Owhadi, Houman2 
[1] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA
[2] CALTECH, Appl & Computat Math Dept, Pasadena, CA 91125 USA
关键词: Polynomial chaos;    Uncertainty quantification;    Stochastic PDE;    Compressive sampling;    Sparse approximation;   
DOI  :  10.1016/j.jcp.2011.01.002
来源: Elsevier
PDF
【 摘 要 】

We propose a method for the approximation of solutions of PDEs with stochastic coefficients based on the direct, i.e., non-adapted, sampling of solutions. This sampling can be done by using any legacy code for the deterministic problem as a black box. The method converges in probability (with probabilistic error bounds) as a consequence of sparsity and a concentration of measure phenomenon on the empirical correlation between samples. We show that the method is well suited for truly high-dimensional problems. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2011_01_002.pdf 753KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次