期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:234
An optimal linear solver for the Jacobian system of the extreme type-II Ginzburg-Landau problem
Article
Schloemer, N.1  Vanroose, W.1 
[1] Univ Antwerp, Dept Wiskunde Informat, B-2020 Antwerp, Belgium
关键词: Ginzburg-Landau equations;    Preconditioning;    Algebraic multigrid;   
DOI  :  10.1016/j.jcp.2012.10.013
来源: Elsevier
PDF
【 摘 要 】

This paper considers the extreme type-II Ginzburg-Landau equations, a nonlinear PDE model for describing the states of a wide range of superconductors. Based on properties of the Jacobian operator and an AMG strategy, a preconditioned Newton-Krylov method is constructed. After a finite-volume-type discretization, numerical experiments are done for representative two- and three-dimensional domains. Strong numerical evidence is provided that the number of Krylov iterations is independent of the dimension n of the solution space, yielding an overall solver complexity of O(n). (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2012_10_013.pdf 973KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次