期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS | 卷:401 |
Second-order invariant domain preserving ALE approximation of hyperbolic systems | |
Article | |
Guermond, Jean-Luc1  Popov, Bojan1  Saavedra, Laura2  | |
[1] Texas A&M Univ, Dept Math, 3368 TAMU, College Stn, TX 77843 USA | |
[2] Univ Politecn Madrid, ETSI Aeronaut & Espacio, Dept Matemat Aplicada Ingn Aeroesp, E-28040 Madrid, Spain | |
关键词: Conservation equations; Hyperbolic systems; Arbitrary Lagrangian Eulerian; Moving meshes; Invariant domains; Convex limiting; | |
DOI : 10.1016/j.jcp.2019.108927 | |
来源: Elsevier | |
【 摘 要 】
In this paper we introduce an invariant domain preserving arbitrary Lagrangian Eulerian method for solving hyperbolic systems. The time stepping is explicit and the approximation in space is done with continuous finite elements. The method is second-order in space and made invariant domain preserving by using a newly introduced convex limiting technique. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcp_2019_108927.pdf | 4276KB | download |