期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:421
Tensor methods for the Boltzmann-BGK equation
Article
Boelens, Arnout M. P.1  Venturi, Daniele2  Tartakovsky, Daniel M.1 
[1] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA
[2] UC Santa Cruz, Dept Appl Math, Santa Cruz, CA 95064 USA
关键词: High-dimensional PDE;    Tensor method;    Non-equilibrium;   
DOI  :  10.1016/j.jcp.2020.109744
来源: Elsevier
PDF
【 摘 要 】

We present a tensor-decomposition method to solve the Boltzmann transport equation (BTE) in the Bhatnagar-Gross-Krook approximation. The method represents the six-dimensional BTE as a set of six one-dimensional problems, which are solved with the alternating least-squares algorithm and the discrete Fourier transform at N collocation points. We use this method to predict the equilibrium distribution (steady-state simulation) and a non-equilibrium distribution returning to the equilibrium (transient simulation). Our numerical experiments demonstrate N log N scaling. Unlike many BTE-specific numerical techniques, the numerical tensor-decomposition method we propose is a general technique that can be applied to other high-dimensional systems. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2020_109744.pdf 1108KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次