期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:307
Galerkin method for unsplit 3-D Dirac equation using atomically/kinetically balanced B-spline basis
Article
Fillion-Gourdeau, F.1,2  Lorin, E.2,3  Bandrauk, A. D.2,4 
[1] Univ Quebec, INRS Energie Mat & Telecommun, Varennes, PQ J3X 1S2, Canada
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3T 1J4, Canada
[3] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[4] Univ Sherbrooke, Fac Sci, Lab Chim Theor, Sherbrooke, PQ J1K 2R1, Canada
关键词: Dirac equation;    Prolate spheroidal coordinates;    Two-center system;    Galerkin method;    Variational method;    B-spline basis set;    Atomic/kinetic balance;   
DOI  :  10.1016/j.jcp.2015.11.024
来源: Elsevier
PDF
【 摘 要 】

A Galerkin method is developed to solve the time-dependent Dirac equation in prolate spheroidal coordinates for an electron-molecular two-center system. The initial state is evaluated from a variational principle using a kinetic/atomic balanced basis, which allows for an efficient and accurate determination of the Dirac spectrum and eigenfunctions. B-spline basis functions are used to obtain high accuracy. This numerical method is used to compute the energy spectrum of the two-center problem and then the evolution of eigenstate wavefunctions in an external electromagnetic field. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2015_11_024.pdf 1403KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:1次